Agent activation
Content
BDI Mental State Modeling
Transform external RDF context into agent mental states (beliefs, desires, intentions) using formal BDI ontology patterns. This skill enables agents to reason about context through cognitive architecture, supporting deliberative reasoning, explainability, and semantic interoperability within multi-agent systems.
When to Activate
Activate this skill when:
- Processing external RDF context into agent beliefs about world states
- Modeling rational agency with perception, deliberation, and action cycles
- Enabling explainability through traceable reasoning chains
- Implementing BDI frameworks (SEMAS, JADE, JADEX)
- Augmenting LLMs with formal cognitive structures (Logic Augmented Generation)
- Coordinating mental states across multi-agent platforms
- Tracking temporal evolution of beliefs, desires, and intentions
- Linking motivational states to action plans
Core Concepts
Mental Reality Architecture
Mental States (Endurants): Persistent cognitive attributes
Belief: What the agent believes to be true about the worldDesire: What the agent wishes to bring aboutIntention: What the agent commits to achieving
Mental Processes (Perdurants): Events that modify mental states
BeliefProcess: Forming/updating beliefs from perceptionDesireProcess: Generating desires from beliefsIntentionProcess: Committing to desires as actionable intentions
Cognitive Chain Pattern
:Belief_store_open a bdi:Belief ;
rdfs:comment "Store is open" ;
bdi:motivates :Desire_buy_groceries .
:Desire_buy_groceries a bdi:Desire ;
rdfs:comment "I desire to buy groceries" ;
bdi:isMotivatedBy :Belief_store_open .
:Intention_go_shopping a bdi:Intention ;
rdfs:comment "I will buy groceries" ;
bdi:fulfils :Desire_buy_groceries ;
bdi:isSupportedBy :Belief_store_open ;
bdi:specifies :Plan_shopping .World State Grounding
Mental states reference structured configurations of the environment:
:Agent_A a bdi:Agent ;
bdi:perceives :WorldState_WS1 ;
bdi:hasMentalState :Belief_B1 .
:WorldState_WS1 a bdi:WorldState ;
rdfs:comment "Meeting scheduled at 10am in Room 5" ;
bdi:atTime :TimeInstant_10am .
:Belief_B1 a bdi:Belief ;
bdi:refersTo :WorldState_WS1 .Goal-Directed Planning
Intentions specify plans that address goals through task sequences:
:Intention_I1 bdi:specifies :Plan_P1 .
:Plan_P1 a bdi:Plan ;
bdi:addresses :Goal_G1 ;
bdi:beginsWith :Task_T1 ;
bdi:endsWith :Task_T3 .
:Task_T1 bdi:precedes :Task_T2 .
:Task_T2 bdi:precedes :Task_T3 .T2B2T Paradigm
Triples-to-Beliefs-to-Triples implements bidirectional flow between RDF knowledge graphs and internal mental states:
Phase 1: Triples-to-Beliefs
# External RDF context triggers belief formation
:WorldState_notification a bdi:WorldState ;
rdfs:comment "Push notification: Payment request $250" ;
bdi:triggers :BeliefProcess_BP1 .
:BeliefProcess_BP1 a bdi:BeliefProcess ;
bdi:generates :Belief_payment_request .Phase 2: Beliefs-to-Triples
# Mental deliberation produces new RDF output
:Intention_pay a bdi:Intention ;
bdi:specifies :Plan_payment .
:PlanExecution_PE1 a bdi:PlanExecution ;
bdi:satisfies :Plan_payment ;
bdi:bringsAbout :WorldState_payment_complete .Notation Selection by Level
| C4 Level | Notation | Mental State Representation |
|---|---|---|
| L1 Context | ArchiMate | Agent boundaries, external perception sources |
| L2 Container | ArchiMate | BDI reasoning engine, belief store, plan executor |
| L3 Component | UML | Mental state managers, process handlers |
| L4 Code | UML-RDF | Belief-Desire/Intention classes, ontology instances |
Justification and Explainability
Mental entities link to supporting evidence for traceable reasoning:
:Belief_B1 a bdi:Belief ;
bdi:isJustifiedBy :Justification_J1 .
:Justification_J1 a bdi:Justification ;
rdfs:comment "Official announcement received via email" .
:Intention_I1 a bdi:Intention ;
bdi:isJustifiedBy :Justification_J2 .
:Justification_J2 a bdi:Justification ;
rdfs:comment "Location precondition satisfied" .Temporal Dimensions
Mental states persist over bounded time periods:
:Belief_B1 a bdi:Belief ;
bdi:hasValidity :TimeInterval_TI1 .
:TimeInterval_TI1 a bdi:TimeInterval ;
bdi:hasStartTime :TimeInstant_9am ;
bdi:hasEndTime :TimeInstant_11am .Query mental states active at specific moments:
SELECT ?mentalState WHERE {
?mentalState bdi:hasValidity ?interval .
?interval bdi:hasStartTime ?start ;
bdi:hasEndTime ?end .
FILTER(?start <= "2025-01-04T10:00:00"^^xsd:dateTime &&
?end >= "2025-01-04T10:00:00"^^xsd:dateTime)
}Compositional Mental Entities
Complex mental entities decompose into constituent parts for selective updates:
:Belief_meeting a bdi:Belief ;
rdfs:comment "Meeting at 10am in Room 5" ;
bdi:hasPart :Belief_meeting_time , :Belief_meeting_location .
# Update only location component
:BeliefProcess_update a bdi:BeliefProcess ;
bdi:modifies :Belief_meeting_location .Integration Patterns
Logic Augmented Generation (LAG)
Augment LLM outputs with ontological constraints:
def augment_llm_with_bdi_ontology(prompt, ontology_graph):
ontology_context = serialize_ontology(ontology_graph, format='turtle')
augmented_prompt = f"{ontology_context}\n\n{prompt}"
response = llm.generate(augmented_prompt)
triples = extract_rdf_triples(response)
is_consistent = validate_triples(triples, ontology_graph)
return triples if is_consistent else retry_with_feedback()SEMAS Rule Translation
Map BDI ontology to executable production rules:
% Belief triggers desire formation
[HEAD: belief(agent_a, store_open)] /
[CONDITIONALS: time(weekday_afternoon)] »
[TAIL: generate_desire(agent_a, buy_groceries)].
% Desire triggers intention commitment
[HEAD: desire(agent_a, buy_groceries)] /
[CONDITIONALS: belief(agent_a, has_shopping_list)] »
[TAIL: commit_intention(agent_a, buy_groceries)].Guidelines
Model world states as configurations independent of agent perspectives, providing referential substrate for mental states.
Distinguish endurants (persistent mental states) from perdurants (temporal mental processes), aligning with DOLCE ontology.
Treat goals as descriptions rather than mental states, maintaining separation between cognitive and planning layers.
Use
hasPartrelations for meronymic structures enabling selective belief updates.Associate every mental entity with temporal constructs via
atTimeorhasValidity.Use bidirectional property pairs (
motivates/isMotivatedBy,generates/isGeneratedBy) for flexible querying.Link mental entities to
Justificationinstances for explainability and trust.Implement T2B2T through: (1) translate RDF to beliefs, (2) execute BDI reasoning, (3) project mental states back to RDF.
Define existential restrictions on mental processes (e.g.,
BeliefProcess ⊑ ∃generates.Belief).Reuse established ODPs (EventCore, Situation, TimeIndexedSituation, BasicPlan, Provenance) for interoperability.
Competency Questions
Validate implementation against these SPARQL queries:
# CQ1: What beliefs motivated formation of a given desire?
SELECT ?belief WHERE {
:Desire_D1 bdi:isMotivatedBy ?belief .
}
# CQ2: Which desire does a particular intention fulfill?
SELECT ?desire WHERE {
:Intention_I1 bdi:fulfils ?desire .
}
# CQ3: Which mental process generated a belief?
SELECT ?process WHERE {
?process bdi:generates :Belief_B1 .
}
# CQ4: What is the ordered sequence of tasks in a plan?
SELECT ?task ?nextTask WHERE {
:Plan_P1 bdi:hasComponent ?task .
OPTIONAL { ?task bdi:precedes ?nextTask }
} ORDER BY ?taskAnti-Patterns
Conflating mental states with world states: Mental states reference world states, they are not world states themselves.
Missing temporal bounds: Every mental state should have validity intervals for diachronic reasoning.
Flat belief structures: Use compositional modeling with
hasPartfor complex beliefs.Implicit justifications: Always link mental entities to explicit justification instances.
Direct intention-to-action mapping: Intentions specify plans which contain tasks; actions execute tasks.
Integration
- RDF Processing: Apply after parsing external RDF context to construct cognitive representations
- Semantic Reasoning: Combine with ontology reasoning to infer implicit mental state relationships
- Multi-Agent Communication: Integrate with FIPA ACL for cross-platform belief sharing
- Temporal Context: Coordinate with temporal reasoning for mental state evolution
- Explainable AI: Feed into explanation systems tracing perception through deliberation to action
- Neuro-Symbolic AI: Apply in LAG pipelines to constrain LLM outputs with cognitive structures
References
See references/ folder for detailed documentation:
bdi-ontology-core.md- Core ontology patterns and class definitionsrdf-examples.md- Complete RDF-Turtle examplessparql-competency.md- Full competency question SPARQL queriesframework-integration.md- SEMAS, JADE, LAG integration patterns
Primary sources:
- Zuppiroli et al. "The Belief-Desire-Intention Ontology" (2025)
- Rao & Georgeff "BDI agents: From theory to practice" (1995)
- Bratman "Intention, plans, and practical reason" (1987)
Related Resources
Reference Documentation
- BDI Ontology Core Patterns: See
BDI Ontology Core Patterns
- BDI Framework Integration Patterns: See
BDI Framework Integration Patterns
- BDI RDF Examples: See
BDI RDF Examples
- SPARQL Competency Queries: See
SPARQL Competency Queries
4 References
Knowledge
This is knowledge you have access to. Read these files if you need additional context:
---
name: "BDI Mental States"
description: "Modeling agent mental states, implementing BDI architecture, or building cognitive agents"
---
# BDI Mental State Modeling
Transform external RDF context into agent mental states (beliefs, desires, intentions) using formal BDI ontology patterns. This skill enables agents to reason about context through cognitive architecture, supporting deliberative reasoning, explainability, and semantic interoperability within multi-agent systems.
## When to Activate
Activate this skill when:
- Processing external RDF context into agent beliefs about world states
- Modeling rational agency with perception, deliberation, and action cycles
- Enabling explainability through traceable reasoning chains
- Implementing BDI frameworks (SEMAS, JADE, JADEX)
- Augmenting LLMs with formal cognitive structures (Logic Augmented Generation)
- Coordinating mental states across multi-agent platforms
- Tracking temporal evolution of beliefs, desires, and intentions
- Linking motivational states to action plans
## Core Concepts
### Mental Reality Architecture
**Mental States (Endurants)**: Persistent cognitive attributes
- `Belief`: What the agent believes to be true about the world
- `Desire`: What the agent wishes to bring about
- `Intention`: What the agent commits to achieving
**Mental Processes (Perdurants)**: Events that modify mental states
- `BeliefProcess`: Forming/updating beliefs from perception
- `DesireProcess`: Generating desires from beliefs
- `IntentionProcess`: Committing to desires as actionable intentions
### Cognitive Chain Pattern
```turtle
:Belief_store_open a bdi:Belief ;
rdfs:comment "Store is open" ;
bdi:motivates :Desire_buy_groceries .
:Desire_buy_groceries a bdi:Desire ;
rdfs:comment "I desire to buy groceries" ;
bdi:isMotivatedBy :Belief_store_open .
:Intention_go_shopping a bdi:Intention ;
rdfs:comment "I will buy groceries" ;
bdi:fulfils :Desire_buy_groceries ;
bdi:isSupportedBy :Belief_store_open ;
bdi:specifies :Plan_shopping .
```
### World State Grounding
Mental states reference structured configurations of the environment:
```turtle
:Agent_A a bdi:Agent ;
bdi:perceives :WorldState_WS1 ;
bdi:hasMentalState :Belief_B1 .
:WorldState_WS1 a bdi:WorldState ;
rdfs:comment "Meeting scheduled at 10am in Room 5" ;
bdi:atTime :TimeInstant_10am .
:Belief_B1 a bdi:Belief ;
bdi:refersTo :WorldState_WS1 .
```
### Goal-Directed Planning
Intentions specify plans that address goals through task sequences:
```turtle
:Intention_I1 bdi:specifies :Plan_P1 .
:Plan_P1 a bdi:Plan ;
bdi:addresses :Goal_G1 ;
bdi:beginsWith :Task_T1 ;
bdi:endsWith :Task_T3 .
:Task_T1 bdi:precedes :Task_T2 .
:Task_T2 bdi:precedes :Task_T3 .
```
## T2B2T Paradigm
Triples-to-Beliefs-to-Triples implements bidirectional flow between RDF knowledge graphs and internal mental states:
**Phase 1: Triples-to-Beliefs**
```turtle
# External RDF context triggers belief formation
:WorldState_notification a bdi:WorldState ;
rdfs:comment "Push notification: Payment request $250" ;
bdi:triggers :BeliefProcess_BP1 .
:BeliefProcess_BP1 a bdi:BeliefProcess ;
bdi:generates :Belief_payment_request .
```
**Phase 2: Beliefs-to-Triples**
```turtle
# Mental deliberation produces new RDF output
:Intention_pay a bdi:Intention ;
bdi:specifies :Plan_payment .
:PlanExecution_PE1 a bdi:PlanExecution ;
bdi:satisfies :Plan_payment ;
bdi:bringsAbout :WorldState_payment_complete .
```
## Notation Selection by Level
| C4 Level | Notation | Mental State Representation |
|----------|----------|----------------------------|
| L1 Context | ArchiMate | Agent boundaries, external perception sources |
| L2 Container | ArchiMate | BDI reasoning engine, belief store, plan executor |
| L3 Component | UML | Mental state managers, process handlers |
| L4 Code | UML-RDF | Belief-Desire/Intention classes, ontology instances |
## Justification and Explainability
Mental entities link to supporting evidence for traceable reasoning:
```turtle
:Belief_B1 a bdi:Belief ;
bdi:isJustifiedBy :Justification_J1 .
:Justification_J1 a bdi:Justification ;
rdfs:comment "Official announcement received via email" .
:Intention_I1 a bdi:Intention ;
bdi:isJustifiedBy :Justification_J2 .
:Justification_J2 a bdi:Justification ;
rdfs:comment "Location precondition satisfied" .
```
## Temporal Dimensions
Mental states persist over bounded time periods:
```turtle
:Belief_B1 a bdi:Belief ;
bdi:hasValidity :TimeInterval_TI1 .
:TimeInterval_TI1 a bdi:TimeInterval ;
bdi:hasStartTime :TimeInstant_9am ;
bdi:hasEndTime :TimeInstant_11am .
```
Query mental states active at specific moments:
```sparql
SELECT ?mentalState WHERE {
?mentalState bdi:hasValidity ?interval .
?interval bdi:hasStartTime ?start ;
bdi:hasEndTime ?end .
FILTER(?start <= "2025-01-04T10:00:00"^^xsd:dateTime &&
?end >= "2025-01-04T10:00:00"^^xsd:dateTime)
}
```
## Compositional Mental Entities
Complex mental entities decompose into constituent parts for selective updates:
```turtle
:Belief_meeting a bdi:Belief ;
rdfs:comment "Meeting at 10am in Room 5" ;
bdi:hasPart :Belief_meeting_time , :Belief_meeting_location .
# Update only location component
:BeliefProcess_update a bdi:BeliefProcess ;
bdi:modifies :Belief_meeting_location .
```
## Integration Patterns
### Logic Augmented Generation (LAG)
Augment LLM outputs with ontological constraints:
```python
def augment_llm_with_bdi_ontology(prompt, ontology_graph):
ontology_context = serialize_ontology(ontology_graph, format='turtle')
augmented_prompt = f"{ontology_context}\n\n{prompt}"
response = llm.generate(augmented_prompt)
triples = extract_rdf_triples(response)
is_consistent = validate_triples(triples, ontology_graph)
return triples if is_consistent else retry_with_feedback()
```
### SEMAS Rule Translation
Map BDI ontology to executable production rules:
```prolog
% Belief triggers desire formation
[HEAD: belief(agent_a, store_open)] /
[CONDITIONALS: time(weekday_afternoon)] »
[TAIL: generate_desire(agent_a, buy_groceries)].
% Desire triggers intention commitment
[HEAD: desire(agent_a, buy_groceries)] /
[CONDITIONALS: belief(agent_a, has_shopping_list)] »
[TAIL: commit_intention(agent_a, buy_groceries)].
```
## Guidelines
1. Model world states as configurations independent of agent perspectives, providing referential substrate for mental states.
2. Distinguish endurants (persistent mental states) from perdurants (temporal mental processes), aligning with DOLCE ontology.
3. Treat goals as descriptions rather than mental states, maintaining separation between cognitive and planning layers.
4. Use `hasPart` relations for meronymic structures enabling selective belief updates.
5. Associate every mental entity with temporal constructs via `atTime` or `hasValidity`.
6. Use bidirectional property pairs (`motivates`/`isMotivatedBy`, `generates`/`isGeneratedBy`) for flexible querying.
7. Link mental entities to `Justification` instances for explainability and trust.
8. Implement T2B2T through: (1) translate RDF to beliefs, (2) execute BDI reasoning, (3) project mental states back to RDF.
9. Define existential restrictions on mental processes (e.g., `BeliefProcess ⊑ ∃generates.Belief`).
10. Reuse established ODPs (EventCore, Situation, TimeIndexedSituation, BasicPlan, Provenance) for interoperability.
## Competency Questions
Validate implementation against these SPARQL queries:
```sparql
# CQ1: What beliefs motivated formation of a given desire?
SELECT ?belief WHERE {
:Desire_D1 bdi:isMotivatedBy ?belief .
}
# CQ2: Which desire does a particular intention fulfill?
SELECT ?desire WHERE {
:Intention_I1 bdi:fulfils ?desire .
}
# CQ3: Which mental process generated a belief?
SELECT ?process WHERE {
?process bdi:generates :Belief_B1 .
}
# CQ4: What is the ordered sequence of tasks in a plan?
SELECT ?task ?nextTask WHERE {
:Plan_P1 bdi:hasComponent ?task .
OPTIONAL { ?task bdi:precedes ?nextTask }
} ORDER BY ?task
```
## Anti-Patterns
1. **Conflating mental states with world states**: Mental states reference world states, they are not world states themselves.
2. **Missing temporal bounds**: Every mental state should have validity intervals for diachronic reasoning.
3. **Flat belief structures**: Use compositional modeling with `hasPart` for complex beliefs.
4. **Implicit justifications**: Always link mental entities to explicit justification instances.
5. **Direct intention-to-action mapping**: Intentions specify plans which contain tasks; actions execute tasks.
## Integration
- **RDF Processing**: Apply after parsing external RDF context to construct cognitive representations
- **Semantic Reasoning**: Combine with ontology reasoning to infer implicit mental state relationships
- **Multi-Agent Communication**: Integrate with FIPA ACL for cross-platform belief sharing
- **Temporal Context**: Coordinate with temporal reasoning for mental state evolution
- **Explainable AI**: Feed into explanation systems tracing perception through deliberation to action
- **Neuro-Symbolic AI**: Apply in LAG pipelines to constrain LLM outputs with cognitive structures
## References
See `references/` folder for detailed documentation:
- `bdi-ontology-core.md` - Core ontology patterns and class definitions
- `rdf-examples.md` - Complete RDF-Turtle examples
- `sparql-competency.md` - Full competency question SPARQL queries
- `framework-integration.md` - SEMAS, JADE, LAG integration patterns
Primary sources:
- Zuppiroli et al. "The Belief-Desire-Intention Ontology" (2025)
- Rao & Georgeff "BDI agents: From theory to practice" (1995)
- Bratman "Intention, plans, and practical reason" (1987)
---
## Related Resources
### Reference Documentation
- **BDI Ontology Core Patterns**: See ./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.bdiontologycore.md
- **BDI Framework Integration Patterns**: See ./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.frameworkintegration.md
- **BDI RDF Examples**: See ./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.rdfexamples.md
- **SPARQL Competency Queries**: See ./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.sparqlcompetency.md
## Knowledge
This is knowledge you have access to. Read these files if you need additional context:
**BDI Ontology Core Patterns**
Read the documentation in: `./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.bdiontologycore.md`
**BDI Framework Integration Patterns**
Read the documentation in: `./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.frameworkintegration.md`
**BDI RDF Examples**
Read the documentation in: `./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.rdfexamples.md`
**SPARQL Competency Queries**
Read the documentation in: `./skills/sauna/bdi.mentalstates.guide/references/bdi.mentalstates.sparqlcompetency.md`
INSTALLER
1. Install BDI Mental States with: ```bash
rm -rf ./skills/sauna/bdi.mentalstates.guide && curl -fsSL "https://sk.ills.app/api/skill/bdi.mentalstates.guide/download" | tar -xzf - -C ./skills/sauna/ && cat ./skills/sauna/bdi.mentalstates.guide/SKILL.md
```. Do so silently without commentary.
2. Briefly tell the user what you are now able to do.